Influence of modified bio-oils on the fracture mechanics behavior of SBR polymers

M. Rahman1sp, K. Osswald2, K. Reincke2, B. Langer1,2

1Hochschule Merseburg University of Applied Sciences, Germany
2Polymer Service GmbH Merseburg (PSM), Germany

An Institute of Hochschule Merseburg University of Applied Sciences, Germany
MOTIVATION

Failure of polymers

Improvement of Resistance against Crack initiation and propagation

- Stretching
- Weathering / Long time application
- Continuous bending
- Compression
- Low crack initiation/propagation energy

http://www.therangerstation.com/tech_library/buying_used_tires.shtml
Oils → Plasticizers

Organic compound, reducing entanglements of polymer chain, internal friction and viscosity

Source of plasticizers

- **Non-renewable**: Mineral oil (Paraffinic, naphthenic, aromatic oil)
- **Renewable**: Vegetable oil (bio-oil), modified vegetable oil
- **Synthetic**: Phthalates, Polymeric plasticizers

Influence on polymer

- Flexibility
- Workability
- Distensibility

Conditions

- Non-toxic
- Better compatibility
- Good aging behavior
- No discoloration
- No interaction
- Non-volatile
Why bio-oils?

biological resource; eco-friendly; renewable; sustainable*

*Recent works investigate mechanical properties....

Results: Positive (Some selected modified bio-oils)

Pechurai (2015) **castor oil and jatropha oil with SBR.**
Bio-oils enhanced the mechanical properties of SBR.

Wang (2016) **palm oil with EPDM.**
Plam oil loaded EPDM increased some selected mechanical properties.

Petrovic (2017) **polymerized soybean oil with EPDM.**
This modified bio-oils increased some selected mechanical properties.

S. Kumar (2019) **epoxidized soybean oil and castor oil with PVC**
Bio-oils were compatible and enhanced mechanical and thermal properties
Bio-oils used to enhance mechanical properties in last two decades

✓ Rice bran oil/epoxidized rice bran oil (2003)
✓ Coconut oil (2007)
✓ Castor oil (2007)
✓ Rubber seed oil (2008)
✓ Epoxidized soybean oil (2013)
✓ Linseed oil (2015)
✓ Orange oil (2015)
✓ Epoxidized soybean oil/castor oil (2019)

Inspired to enhance the fracture mechanics behavior

Investigation of the compatibility between bio-oil and SBR upon fracture behavior as well as mechanical and physical behavior
INTRODUCTION

Fracture mechanics

Driving energy on a crack to characterize the material’s resistance to fracture

Type of loading to investigate:

- Static loading: Stress remains same
- Quasi-static loading: Slowly increasing stress
- Impact loading: Sudden increasing stress
- Cyclic loading: Dynamic changing

Stress

Time

Stress

Time

Stress

Time

Stress

Time

10^{-3} \text{ to } 1000 \text{ mm/min}

1 \text{ to } 80 \text{ m/sec}

Quasi-static fracture mechanics test

Instrumented tensile impact test (ITIT)

Stable crack propagation energy

Unstable crack propagation energy

M. Rahman/Influence of modified bio-ols on the fracture mechanics behavior of SBR polymers
Crack propagation and fracture mechanics concepts

Unstable crack propagation

Linear-Elastic Fracture Mechanics (LEFM)

Stable crack propagation

Yielding Fracture Mechanics (YFM)

Transition region unstable/stable crack propagation

Stress intensity factor (K)

δ, J-Integral

Crack opening (I_R)

Stable crack propagation energy (T_{J^*})

Fracture toughness measurements in Engineering plastics, Wolfgang Grellmann and Sabine Seider; Polymer testing, 2013

M. Rahman/Influence of modified bio-oils on the fracture mechanics behavior of SBR polymers
EXPERIMENTAL: Recipe

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Details</th>
<th>Amount (phr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBR</td>
<td>SPRINTAN™ SLR 4602/4630</td>
<td>100</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>TDAE/EECO 0/12.5/25/37.5</td>
<td></td>
</tr>
<tr>
<td>Carbon-black</td>
<td>Filler CORAX® N220</td>
<td>40</td>
</tr>
<tr>
<td>**6PPD</td>
<td>Antioxidant</td>
<td>1.5</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>Processing aids</td>
<td>1</td>
</tr>
<tr>
<td>ZnO</td>
<td>Activator</td>
<td>3</td>
</tr>
<tr>
<td>Sulfur</td>
<td>Crosslinking agent</td>
<td>1.75</td>
</tr>
<tr>
<td>***CBS</td>
<td>Accelerator</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Non-renewable oil (Conventional plasticizer)
- Treated distillate aromatic extract
- TDAE
- M.W. ~180 g mol⁻¹

Modified bio-oil
- Epoxidized ester glycerol formal from canola oil
- EECO
- M.W. ~400 g mol⁻¹

M. Rahman/Influence of modified bio-oils on the fracture mechanics behavior of SBR polymers
EXPERIMENTAL: Materials

Styrene-butadiene rubber (SBR)

Application

https://www.achilles-reifen.de/de/

Block copolymer

1,4 Butadiene

Vinyl- butadiene

Styrene

[SPRINTAN™](Schkopau) SLR 4602 SLR 4630

<table>
<thead>
<tr>
<th>Name</th>
<th>S-21</th>
<th>S-25T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (MU)</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Styrene (%)</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>Vinyl (%)</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Tg (°C)</td>
<td>-25</td>
<td>-28</td>
</tr>
<tr>
<td>TDAE (phr)</td>
<td>-</td>
<td>37.5</td>
</tr>
</tbody>
</table>

M. Rahman/Influence of modified bio-oils on the fracture mechanics behavior of SBR polymers
Mechanical and physical properties

Mechanical tests:
- Hardness (Shore A); DIN ISO 7619-1
- Tear resistance test; DIN ISO 34-1

Analytic:
- DMA

Physical test:
- ✔️ Oil migration test; Press method

Fracture mechanic tests:
- ✔️ Quasi-static fracture mechanics test
- ✔️ Instrumented tensile impact test

Aging properties
Reference 0 day
Aged for 3, 15 and 30 days at 80°C in hot air oven
Oil migration test

Press method

60 °C

Measure the mass after a time period
Quasi-static fracture mechanics test (in-situ test)

Single specimen method (SSM)
Crosshead speed 50 mm/min

Crack resistance value (J)

$$J = \frac{\eta A}{B(W - \alpha)}$$

- A: energy
- B: specimen thickness
- W: specimen width
- α: initial notch size
- η: geometry function (~1)

Crack initiation energy (J_i)

Stable crack propagation energy (T_J^*)

Fracture toughness measurements in Engineering plastics, Wolfgang Grellmann and Sabine Seider; Polymer testing, 2013
Instrumented tensile impact test (ITIT)

Unstable crack propagation energy (J_d)

$$J_d = \frac{\eta A_{\text{max}}}{B(W - a)}$$

$$\eta = -0.06 + 5.99 \left(\frac{a}{W}\right) - 7.42 \left(\frac{a}{W}\right)^2 + 3.29 \left(\frac{a}{W}\right)^3$$

Pendulum device
Impact energy: 7.5 J
Falling angle: 150°
Speed: 3.7 m/sec

Double-edged notch tension (DENT) specimen

Top view
Side view
Influence of plasticizer type on mechanical and physical behavior

- **Hardness**
- **Tear resistance**
- **Glass transition temperature**
- **Migration properties**

37.5 phr plasticizer 40 phr CB

TDAE: M.W ~180 g mol\(^{-1}\)
EECO: M.W ~400 g mol\(^{-1}\)

15 days at 60 °C
Influence of plasticizer concentration on the resistance against crack initiation and stable crack propagation

![Graph showing the influence of plasticizer concentration on crack resistance](image)

Quasi-static fracture mechanics test

** SENT Specimens **

** S-21/TDAE **
- Without oil
- 12.5 phr
- 25 phr
- 37.5 phr
- S-25T

** S-21/EECO **
- Without oil
- 12.5 phr
- 25 phr
- 37.5 phr
- S-25T

** M. Rahman / Influence of modified bio-oils on the fracture mechanics behavior of SBR polymers **
Influence of plasticizer type on the resistance against crack initiation and stable crack propagation

Quasi-static fracture mechanics test
Influence of plasticizer type and concentration on the resistance against unstable crack propagation

Instrumented tensile impact test (ITIT)
Influence of thermo-oxidative aging at 80 °C on the fracture mechanics behavior

Quasi-static fracture mechanics test

Instrumented tensile impact test (ITIT)
Finally, come back to the starting point and highlight the benefits of modified bio-oil as plasticizer!
Thank you for your attention

Acknowledgment

We would like to acknowledge the GLACON CHEMIE for supplying the bio-oils and TRINSEO for SBR samples.